a2 United States Patent

Bellessort et al.

US009338258B2

US 9,338,258 B2
May 10, 2016

(10) Patent No.:
(45) Date of Patent:

(54) METHODS AND NETWORK DEVICES FOR (56) References Cited
COMMUNICATING DATA PACKETS
U.S. PATENT DOCUMENTS
(71) Applicant: CANON KABUSHIKI KAISHA, 5,534,861 A 7/1996 Chang et al.
Tokyo (JP) 5,951,623 A 9/1999 Reynar et al.
(Continued)
(72) Inventors: Romain Bellessort, Rem}es (ER); FOREIGN PATENT DOCUMENTS
Youenn Fablet, L.a Dominelais (FR);
Hervé Ruellan, Rennes (FR) EP 0933876 Al 8/1999
EP 2044750 A2 1/2008
. L WO WO 2011067769 Al * 6/2011
(73) Assignee: Canon Kabushiki Kaisha, Tokyo (JP) OTHER PUBLICATIONS
® “A Proposal for Shared Dictionary Compression over HTTP”, Jon
(*) Notice: SubJeCt. to any (?;S(Cilalmeé’. the Iiermdoftl;lg Butler et al., Google, Inc., Sep. 8, 2008. Obtained from: http://lists.
patent 1s extended or adjusted under w3.org/Archives/Public/ietf-http-wg/2008JulSep/att-044 1 /Shared__
U.S.C. 154(b) by 719 days. Dictionary_ Compression__over_ HTTP.pdf.
(Continued)
(21) Appl. No.: 13/665,773 . .
Primary Examiner — Mang Yeung
. Assistant Examiner — Natali N Pascual Peguero
(22) Filed: Oct. 31,2012 (74) Attorney, Agent, or Firm — Canon US.A., Inc. IP
Division
(65) Prior Publication Data (57) ABSTRACT
US 2013/0114626 Al May 9, 2013 Methods and network devices for communicating data pack-
ets in a set of transmissions between a transmitter and a
receiver of a communications network are described. The
(30) Foreign Application Priority Data method includes prior exchanging transmitter-provided
packet information and receiver-provided packet information
Nov. 8, 2011 (GB) 1119224.2 between the transmitter and the receiver, generating an initial
compression dictionary before the first transmission, based
on the exchanged transmitter-provided packet information
(51) Int.CL and the exchanged receiver-provided packet information. At
HO4L 29/06 (2006.01) the transmitter, the method further includes compressing the
HO3M 7/30 (2006.01) data packets of the first and subsequent transmissions of the
(52) US.CL set using the initial compression dictionary, and sending the
CPC oo HO4L 69/04 (2013.01); HO3M 7/3088 ~ compressed data packets over the communications network
(2013.01); HO3M 7/6052 (2013.01); HO3M to the receiver. At the receiver, the method further 1pclude;s
7/6038 (2013.01) receiving compressed data packets from the transmitter via
the communications network, and decompressing the com-
5 p g
(58) Field of Classification Search pressed data packets received in the first and subsequent

CPC .. HO4AL 69/04; HO3M 7/6052; HO3M 7/6058;
HO3M 7/3088

USPC 370/252,352, 389, 468, 477
See application file for complete search history.

transmissions of the set, using the initial compression dictio-
nary. Improved compression of the first transmission is thus
obtained.

22 Claims, 8 Drawing Sheets

N1 Data (version: 1234)

N1 Shared

Dictionary
-
N2 Data (version: 5678}

N2 Shared
Dictionary

Initial compression dictionary ICD

Static
Dictionary SD

==

Initial compression dictionary ICD

N1 Shared
Dictionary

N2 Shared
Dictionary

Static
Dictionary SD

N1 Shared
Dictionary

N2 Shared
Dictionary

US 9,338,258 B2

Page 2
(56) References Cited 2011/0107190 A1* 5/2011 Hendersonetal. ... 714/798
U.S. PATENT DOCUMENTS OTHER PUBLICATIONS
g"; ég’ggé Eé * ;; %8(1)8]SSSI%?Y(:iuntetlal' ~~~~~~~~~~~~ 382/253 “Scalable, Robust, Efficient Dictionary-Based Compression
,796, afford et al. » . . .
7.953.881 Bl 52011 Vadlakonda et al. (SCRIBE)”, Zhigang Liu et al., Nokia Research Center, Internet
8,400,334 B2* 3/2013 Leecetal.ccocvvvennnnnn. 341/51 Engineering Task Force, IETF, Network Working Group Internet
2002/0037035 Al 3/2002 Singh Draft, version 01, Jul. 18, 2001. Obtained from: http://tools.ietf.org/
2002/0057716 Al 5/2002 Svanbro et al. html/drafi-li h he-01
2004/0034708 Al 2/2004 att-liu-rohe-serbe-u L.
2008/0037509 Al* 2/2008 ... 370/349 . .
2009/0219930 Al* 9/2009 e, 370/389 * cited by examiner

U.S. Patent May 10, 2016 Sheet 1 of 8 US 9,338,258 B2

HTTP headers

Host: en.wikipedia.org

User-Agent: Mozilla/5.0 (Windows; en-US) Gecko/20110303
Firefox/3.6.15

Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;q=0.5

Keep-Alive: 115

Proxy-Connection: keep-alive

SPDY Initial compression dictionary

optionsgetheadpostputdeletetraceacceptaccept-charsetaccept-encodingaccept-
languageauthorizationexpectfromhostif-modified-sinceif-matchif-none-matchi
f-rangeif-unmodifiedsincemax-forwardsproxy-authorizationrangerefererteuser
-agent10010120020120220320420520630030130230330430530630740040140240340440
5406407408409410411412413414415416417500501502503504505accept-rangesageeta
glocationproxy-authenticatepublicretry-afterservervarywarningwww-authentic
ateallowcontent-basecontent-encodingcache-controlconnectiondatetrailertran
sfer-encodingupgradeviawarningcontent-languagecontent-lengthcontent-locati
oncontent-md5content-rangecontent-typeetagexpireslast-modifiedset-cookieMo
ndayTuesdayWednesdayThursdayFridaySaturdaySundayJanFebMarAprMayJunJulAugSe
pOctNovDecchunkedtext/htmlimage/pngimage/jpgimage/gifapplication/xmlapplic
ation/xhtmitext/plainpublicmax-agecharset=is0-8859-1utf-8gzipdeflateHT TP/1
statusversionurl

\
ico - Fig. 1

ROM
207 =200
™N-
cpu | 21
RAM
ez | Fig. 2
Communication] Network
Keyboard |, o Interface |
| 202 203
Hard disk 204 @]
212 e
drive 205
|

I
206 [Digital camera]\zoo

ﬂ
w |-}
-~

U.S. Patent

May 10, 2016

Sheet 2 of 8

N1 Data (version: 1234)

N1 Shared
Dictionary

A 4

N

N2 Data (version: 5678)

N2 Shared
Dictionary

Initial compression dictionary ICD

Static
Dictionary SD

N1 Shared
Dictionary

N2 Shared
Dictionary

US 9,338,258 B2

Initial compression dictionary ICD

Static
Dictionary SD

N1 Shared
Dictionary

N2 Shared
Dictionary

Fig. 3

U.S. Patent May 10, 2016

1st connection to example.org

Client
request

< response
request
response

Server

”

A
v

2" connection to example.org

Client Server
request N
Ll
< response
T
request -
”~
< response
~ -

Fig.

Sheet 3 of 8 US 9,338,258 B2
SPDY Invention
Default Obtain shared dictionaries
dictionary and create improved
initial dictionary 1D
Updated Updated
dictionary 1 dictionary A
Default Check version and if
dictionary ok, reuse improved
initial dictionary ID
Updated Updated
dictionary 2 dictionary B
4

U.S. Patent

May 10, 2016

Sheet 4 of 8

N1 Data (version: 1234)

Shared part
of N1 dictionary

Private part
of N1 dictionary

A 4

N

N2 Data (version: 5678)

Shared part
of N2 dictionary

Private part
of N2 dictionary

N1 to N2 Initial compression dictionary (ICD)

Static
Dictionary SD

Shared part
of N1 dictionary

Private part
of N1 dictionary

Shared part
of N2 dictionary

US 9,338,258 B2

N2 to N1 Initial compression dictionary (ICD)

Static
Dictionary SD

Shared part
of N1 dictionary

Shared part
of N2 dictionary

Private part
of N2 dictionary

Fig. 5

U.S. Patent

May 10, 2016

600
\

Establish connection
between Node 1 (N1)
and Node 2 (N2)

version of dictionary?

640 \

Initialize compression
contexts

&

Sheet 5 of 8

US 9,338,258 B2

Exchange
packet information

/ 620

V

v

650
\

Exchange data packets
comprising
compressed data

J

690
\

End

800
Get lists of items for /
dictionaries D1 and D2

emaining
item IT in
hoth lists?

yes

Build initial compr.
dictionaries
for N1 and N2

/ 630

Fig. 6

890

End

Build single value from

values of IT from D1 and D2

IV1 and IV2,

Build value from
IT

/‘ 850

830
S

Append value to
dictionary

N

Append value to
dictionary

/ 860

U.S. Patent

May 10, 2016 Sheet 6 of 8 US 9,338,258 B2

Obtain Node i Shared part ofdict./ 700
& Node j Shared part of dict.
(NiS & NjS)

y

720
U

730
Dynamic dictionary: Dynamic dictionary: /
DD = NiS + NjS DD = NiS + NjS + NiP

no yes

Static
dictionary SD?

N y

750
U

Initial compression Initial compression f 760
dictionary: dictionary:
ICD =DD ICD=DD + SD

790
End /

Fig. 7

U.S. Patent May 10, 2016 Sheet 7 of 8 US 9,338,258 B2

<dictionary>
<private>
acceptaccept-charsetaccept-encodingaccept-languageuser-
agentMozilla/5.0 (Windows; en- US) Gecko/20110303 Firefox/3.6.15
<[private>
<shared>
<version>HTTP/1.1</version>
<types>text’/html;image/jpg;image/gif,image/png</types>
<languages>en;en-us</languages>
</shared>
</dictionary>

N1 local dictionary

<dictionary>
<private>
serverApachestatus100101200201202203204205206300301302303304305
3063074004014024034044054064074084094104114124134144154164175
00501502503504505content-languagecontent-lengthcontent-
locationcontent-type
</private>
<shared>
<version>HTTP/1.1</version>
<types>text/html;image/jpg;image/qgif</types>
<languages>en</languages>
</shared>
</dictionary>

N2 local dictionary

Fig. 9

U.S. Patent May 10, 2016 Sheet 8 of 8 US 9,338,258 B2

1000
\ Get a request
matching pattern PAT

1050

//

Get compression
context for pattern PAT

1040
/

ICD for PAT Create compression

created? context f(_)r pattern PAT
using ICD
1060
1030\ y
Build ICD for pattern PAT Add indication of e

pattern PAT

/1070
Compress data

/1080

Send data

1090
End /

Fig. 10

US 9,338,258 B2

1

METHODS AND NETWORK DEVICES FOR
COMMUNICATING DATA PACKETS

This application claims priority from GB Patent Applica-
tion No. 1119224.2, filed Nov. 8, 2011, which is hereby
incorporated by reference in its entirety.

The present invention concerns methods and network
devices for communicating data packets through a set of
transmissions.

The invention belongs to the field of network communica-
tion, and in particular to the field of data compression used
when sending data packets over a communications network.

Methods are known for communicating data packets
through a set of transmissions between a transmitter and a
receiver of a communications network, wherein the data
packets for the transmissions are compressed using a com-
pression dictionary, before they are sent over the network.
This is the case for a large number of data transmission
protocols, for example the well-known HTTP protocol
wherein payload data are dictionary-based compressed, or
the SPDY protocol (standing for SPeeDY) which provides
improvements to the HTTP protocol.

Similarly, at the receiving side, compressed data packets
received through the transmissions are decompressed also
using a compression dictionary, generally the same one as
used by the transmitter.

For purposes of illustration of the present invention, refer-
ence is now made to the SPDY protocol, although the inven-
tion may apply to other data transmission protocols.

HTTP (Hypertext Transfer Protocol) is commonly used to
request and send web pages, and is based on a client/server
architecture, wherein the client sends requests, namely HTTP
requests, to the server, and the server replies to the client’s
requests with responses, namely HTTP responses.

Requests and responses are messages or data packets that
comprise various parts, among which are non-compressed
HTTP headers and HTTP payload.

FIG. 1 represents an example of six HTTP headers that are
successively listed in an HTTP message.

An HTTP header consists of a name (in bold in the Figure)
along with a corresponding value.

For instance, in “Host: en.wikipedia.org” Host is the
header name, and its value is “en.wikipedia.org”. This header
is used to indicate the host of the requested resource (for
instance, Wikipedia page describing HTTP, available at
http://en.wikipedia.org/wiki/HTTP). HT TP headers are well-
known by one skilled in the art, and therefore are not further
detailed here.

In the first versions of HTTP, a TCP/IP connection was
established for each HTTP request/response exchange.

SPDY is a protocol that improves HTTP in several ways.

First, it enables several HTTP requests and responses to be
sent over a unique TCP/IP connection, thus defining a set of
HTTP transmissions therein. In this way, all the components
of' a web page (HTML documents, images, JavaScript, etc.)
may share the same TCP/IP connection, thus speeding up the
web page loading.

Secondly, SPDY implements compression of the HTTP
headers exchanged over the shared TCP/IP connection, using
the Zlib Deflate algorithm (also known through the “zip”
format). This compression reduces the network load.

The compression algorithm of SPDY has the ability to use
an initial Deflate compression dictionary containing generic
data that often occurs in HT'TP headers, to improve compres-
sion. This compression dictionary is specific to the current
TCP/IP connection during which it is used and it dynamically
evolves to perform efficient compression. For example new

25

40

45

2

data that are encountered during compression may be added
to the dictionary to ensure efficient compression of further
occurrences of the same data. Following the current connec-
tion, a new initial compression dictionary is loaded for the
next TCP/IP connection.

SPDY specifies an initial compression dictionary which is
the same in all cases: the same for each TCP/IP connection,
and the same at the transmitter (compressor) and at the
receiver (decompressor).

Bottom of FIG. 1 represents such a generic initial compres-
sion dictionary, denoted ICD, in a string format used as ref-
erence by Zlib Deflate to initialize a coding table for example.

The compression ratio of the HTTP headers in the majority
of'the transmissions of'a current TCP/IP connection is good to
excellent, in particular close to 15%. However, this is true
only as from the second transmission of the TCP/IP connec-
tion.

Indeed, the HTTP header compression ratio for the first
transmission in the TCP/IP connection is about 65% only.

This is because the HT'TP headers tend to be redundant or
similar from one transmission to the other. In such a situation,
during the first transmission of the connection, the initial
compression dictionary learns the unknown HTTP header
data and does not yet compress them efficiently. Due to the
redundancy of the HTTP headers, the second and further
transmissions are much more efficiently compressed.

To further improve the compression efficiency, patent pub-
lication U.S. Pat. No. 5,534,861 describes an optimization of
the dictionary initialization by removing some initial com-
pression inefficiencies from the dictionary.

Another publication, U.S. Pat. No. 5,951,623, suggests
selecting a dictionary from a list of dictionaries depending on
the content of the data when compressing data. The index of
the selected dictionary in the list is added to the compressed
data. The variety of dictionaries in the list makes it possible to
select a dictionary that is more efficient than the initial com-
pression dictionary statically defined in SPDY.

Inthese two publications, the improvement in compression
ratio for the first transmission remains low. This is mainly
because there is still a need to learn, during the first transmis-
sion, data that are not yet defined in the initial compression
dictionary.

The present invention has been devised to address one or
more of the foregoing concerns.

According to afirstaspect of the invention there is provided
a method of communicating data packets in a set of transmis-
sions between a transmitter and a receiver of a communica-
tions network, the method comprising:
exchanging transmitter-provided packet information and

receiver-provided packet information between the trans-

mitter and the receiver, before the set of transmissions;

generating an initial compression dictionary based on the
exchanged transmitter-provided packet information and
the exchanged receiver-provided packet information;

at the transmitter, compressing the data packets of the set of
transmissions using the initial compression dictionary, and
sending, through the set of transmissions, the compressed
data packets over the communications network to the
receiver.

Packet information includes data that defines the packet,
such as for example data fields (e.g. HT'TP headers as dis-
closed above). Since the exchange of transmitter-provided
and receiver-provided information is generally done before
establishing a connection in which the set of transmissions
occurs, the generation of the initial dictionary is done before

US 9,338,258 B2

3

the first of these transmissions so that the data packets of the
first and subsequent transmissions are compressed using that
initial dictionary.

The invention substantially improves the compression
ratio of the first transmission of the set of transmissions.

This is achieved by exchanging packet information in order
for it to be known by both transmitter and receiver so that they
can initialize their initial compression dictionary with this
shared information before performing the transmissions of
the set (i.e. including the first transmission). In the above
particular case of SPDY, this may be understood through the
following example: prior to exchanging compressed HTTP
headers, the client and server exchange information relating
to the headers they specifically often use.

Packet information that are generally used by the transmit-
ter or the receiver and not listed in a by-default compression
dictionary may then be inserted in the initial compression
dictionary before compressing data packets for the first trans-
mission. The invention thus uses a more efficient initial com-
pression dictionary since it is specifically adapted to the trans-
mitter and receiver considered (or client and server as the case
may be).

Thanks to the exchange, both the transmitter and the
receiver are aware of new packet information (whether it is
provided by the transmitter or the receiver) and thus compres-
sion of that information is performed right from the first
transmission, which is only possible in SPDY for subsequent
transmissions.

While the above presentation of the invention relates to an
initial Deflate compression dictionary, the invention may also
apply to any other kind of initial compression dictionary,
including a compression dictionary that provides encoding
indexes to data to compress (i.e. an initial indexing dictio-
nary).

According to a second aspect of the invention there is
provided a method of communicating data packets in a set of
transmissions between a transmitter and a receiver of a com-
munications network, the method comprising:
exchanging transmitter-provided packet information and

receiver-provided packet information between the trans-

mitter and the receiver, before the set of transmissions;

generating an initial compression dictionary based on the
exchanged transmitter-provided packet information and
the exchanged receiver-provided packet information;

at the receiver, receiving, through the set of transmissions,
compressed data packets from the transmitter via the com-
munications network, and decompressing the compressed
data packets received in the set of transmissions, using the
initial compression dictionary.

This method provides advantages similar to the above
method, but at the receiver.

It will become apparent from the disclosure below that a
network device can embed both functions: transmitter and
receiver, such that a device can implement both of the above
methods.

In one embodiment of the invention, generating the initial
compression dictionary comprises concatenating transmitter-
provided and receiver-provided compression dictionaries. In
this situation, the transmitter-provided and receiver-provided
packet information is all or part of compression dictionaries
respectively local to the transmitter and to the receiver.

In another embodiment, the transmitter and the receiver
generate the same initial compression dictionaries for their
respective first data packet transmission from themselves in
the set. Of course the initial compression dictionary is used by
the transmitter to compress data before sending them, while
the receiver uses the same initial compression dictionary to

10

15

20

25

30

35

40

45

50

55

60

65

4

decompress those sent compressed data after reception. The
above provision specifies that the receiver also generates the
same initial compression dictionary for its first transmission,
which is generally a response (e.g. an HTTP response) to the
first message from the transmitter (e.g. a HT'TP request).

In one embodiment, the exchanged packet information
comprises a private part and a shared part of a dictionary local
to the transmitter or the receiver providing the packet infor-
mation.

In particular, the transmitter or receiver generates, for the
first transmission of the set from itself, an initial compression
dictionary using the private and shared parts of its local dic-
tionary and the exchanged shared part of the other’s local
dictionary.

Reciprocally, the transmitter or receiver generates, for the
first transmission of the set from the other, an initial compres-
sion dictionary using the shared part of its local dictionary and
the exchanged private and shared parts of the other’s local
dictionary.

These provisions make it possible to specialize the com-
pression dictionaries used for each communication direction
(e.g. a dictionary specific to HTTP requests from a client to a
server and a dictionary specific to HT'TP responses from the
server to the client). In this situation, the transmitter and the
receiver use different initial compression dictionaries for
their respective first data packet transmission from them-
selves.

In another embodiment of the invention, generating the
initial compression dictionary is also based on a predefined
compression dictionary known by both the transmitter and the
receiver. This predefined or “static” compression dictionary
may advantageously define packet information that is com-
mon to many or all network nodes implementing the inven-
tion. Indeed, in that case, since this packet information is
useful, exchanging it through the transmitter-provided or
receiver-provided packet information is advantageously
avoided.

Such a static dictionary may for example be the initial
compression dictionary defined by the SPDY specification.

In yet another embodiment of the invention, the initial
compression dictionary depends on a URL pattern included
in the data packet to be transmitted in a transmission of the set,
in particular in the first transmission of the set. Generally, the
URL pattern matches a URL defined in the data packet.
Thanks to this provision, more efficient initial compression
dictionaries may be used, resulting in higher compression
starting from the first transmission in the set. For example, a
dictionary specialized with data about HTTP headers relating
to images may be used when compressing data packets
including the URL of a directory of images. And a dictionary
specialized with HTTP headers relating to digital documents
may be used when compressing data packets including the
URL of a directory of digital documents.

In particular, the exchanged transmitter-provided packet
information and receiver-provided packet information (and
possibly also the predefined compression dictionary) are spe-
cific to the URL pattern.

In one embodiment of the invention, the transmitter-pro-
vided and receiver-provided packet information comprises
respective version numbers.

In particular, the method may further comprise exchanging
the version numbers between the transmitter and the receiver,
and checking the exchanged version numbers with version
numbers associated with an already-generated initial com-
pression dictionary. Of course, version numbers can be imple-
mented independently for the above mentioned private and
shared parts of local dictionaries.

US 9,338,258 B2

5

Thanks to these provisions, the exchange of some trans-
mitter-provided packet information and receiver-provided
packet information may be avoided. This is because, by
checking the version numbers, only the packet information
whose version numbers differ between the transmitter and the
receiver have to be sent. This reduces the network load.

In another embodiment of the invention, the set of trans-
missions belongs to the same connection over the communi-
cations network between the transmitter and the receiver. A
connection between two network devices, as a TCP connec-
tion, is the result of a negotiated allocation of resources by
both devices to make it possible for them to communicate
with each other. The present invention is particularly advan-
tageous for the first transmissions (i.e. the first transmission
from a first device to a second device, and the first transmis-
sion from the second device to the first device) of a given
connection.

According to a particular feature, exchanging the transmit-
ter-provided and receiver-provided packet information is per-
formed prior to establishing the connection to which the set of
transmissions belongs. This is for example the case when the
exchange occurs during a previous connection. The advan-
tage of this configuration is that the exchange may be sub-
stantially transparent to the communicating devices. In par-
ticular, the transmitter-provided and receiver-provided packet
information may be exchanged in periods of no data packet
transmission during a first connection between the transmitter
and the receiver prior to the connection to which said set of
transmissions belongs. Here, the invention takes advantage of
the unused transmission time of the first connection to trans-
parently exchange the packet information. This avoids plan-
ning a specific time period for packet information exchange
that would delay the transmissions of the data packets.

According to another particular feature, an initial compres-
sion dictionary is obtained for each new connection between
the transmitter and the receiver, and the initial compression
dictionary of a connection evolves with the compression of
data packets for the set of transmissions of that connection.

In yet another embodiment of the invention, the transmit-
ter-provided and receiver-provided packet information is not
compressed when exchanged. This is because they areused to
generate the initial compression dictionary, and thus could
not be decompressed without that dictionary.

In a particular application of the invention, the transmitter-
provided packet information and the receiver-provided
packet information comprise data relating to HTTP header
contents, and compressing the data packets comprises com-
pressing HTTP headers of the data packets using the initial
compression dictionary.

In particular, the transmitter and the receiver form a client-
server scheme.

According to a third aspect of the invention there is pro-
vided a network device for communicating with a remote
network device of a communications network, through a set
of transmissions of data packets, the network device compris-
ing:
an exchange module for exchanging, with the remote network

device and before the set of transmissions, local packet

information and remote-device-provided packet informa-
tion;

generation means for generating an initial compression dic-
tionary based on the exchanged local and remote-device-
provided packet information;

a compressor for compressing the data packets of the set of
transmissions using the initial compression dictionary; and

40

45

55

65

6

a communication module for sending, through the set of
transmissions, the compressed data packets over the com-
munications network to the remote network device.
According to a fourth aspect of the invention there is pro-

vided a network device for communicating with a remote

network device of a communications network, through a set
oftransmissions of data packets, the network device compris-
ing:

an exchange module for exchanging, with the remote network
device and before the set of transmissions, local packet
information and remote-device-provided packet informa-
tion;

generation means for generating an initial compression dic-
tionary based on the exchanged local and remote-device-
provided packet information;

a communication module for receiving, through the set of
transmissions, compressed data packets from the remote
network device via the communications network; and

a decompressor for decompressing the compressed data
packets received in the set of transmissions, using the ini-
tial compression dictionary.

According to a fifth aspect of the invention there is pro-
vided a network system comprising two network devices as
defined above communicating together.

Another aspect of the invention relates to a computer pro-
gram product for a programmable apparatus, the computer
program product comprising a sequence of instructions for
carrying out one of the methods as set out above when loaded
into and executed by the programmable apparatus.

Yet another aspect of the invention relates to a non-transi-
tory computer-readable storage medium, able to be read by a
programmable apparatus, storing instructions of a computer
program for carrying out one of the methods as set out above
when loaded into and executed by the programmable appa-
ratus.

The network devices, the network system, the computer
program product and the computer-readable storage medium
may have features and advantages that are analogous to those
set out above and below in relation to the methods of com-
municating, in particular that of improving the compression
ratio of the first transmission (in each communication direc-
tion) in a set of transmissions.

Another aspect of the invention relates to a method of
communicating substantially as herein described with refer-
enceto, and as shownin, FIG. 6; FIGS. 6 and 7; FIGS. 6, 7 and
8; FIGS. 6 and 8; FIGS. 6 and 10 of the accompanying
drawings.

Optional features of the invention are further defined in the
dependent appended claims.

At least parts of the method according to the invention may
be computer implemented. Accordingly, the present inven-
tion may take the form of an entirely hardware embodiment,
an entirely software embodiment (including firmware, resi-
dent software, micro-code, etc.) or an embodiment combin-
ing software and hardware aspects which may all generally be
referred to herein as a “circuit”, “module” or “system”. Fur-
thermore, the present invention may take the form of a com-
puter program product embodied in any tangible medium of
expression having computer usable program code embodied
in the medium.

Since the present invention can be implemented in soft-
ware, the present invention can be embodied as computer
readable code for provision to a programmable apparatus on
any suitable carrier medium, for example a tangible carrier
medium or a transient carrier medium. A tangible carrier
medium may comprise a storage medium such as a floppy
disk, a CD-ROM, a hard disk drive, a magnetic tape device or

US 9,338,258 B2

7

a solid state memory device and the like. A transient carrier

medium may include a signal such as an electrical signal, an

electronic signal, an optical signal, an acoustic signal, a mag-
netic signal or an electromagnetic signal, e.g. a microwave or

RF signal.

Embodiments of the invention will now be described, by
way of example only, and with reference to the following
drawings in which:

FIG. 1 illustrates six HI'TP headers and a SPDY initial
compression dictionary of the prior art;

FIG. 2 is a block diagram illustrating components of a
processing device in which embodiments of the invention
may be implemented;

FIG. 3 illustrates a first example of implementation of the
invention;

FIG. 4 compares the implementation of FIG. 3 with the
conventional SPDY protocol;

FIG. 5 illustrates another example of implementation of the
invention, based on private and shared parts of dictionaries
local to the nodes;

FIG. 6 is a flowchart illustrating exchanges of data packets
using dictionaries, according to embodiments of the inven-
tion;

FIG. 7 is a flowchart illustrating the building of an initial
compression dictionary for Ni to Nj transmissions, according
to embodiments of the invention;

FIG. 8 is a flowchart illustrating the addition of structured
dictionaries, according to embodiments of the invention;

FIG. 9 represents two XML-structured dictionaries having
private and shared parts, to implement embodiments of the
invention; and

FIG. 10 illustrates, in a flow chart, an embodiment of the
invention handling URL patterns.

FIG. 2 schematically illustrates a processing device 200,
either a transmitter, or a receiver, or a device embedding both
functionalities, configured to implement at least one embodi-
ment of the present invention. The processing device 200 may
be a device such as a micro-computer, a workstation or a light
portable device. The device 200 comprises a communication
bus 213 to which there are preferably connected:
central processing unit 211, such as a microprocessor,

denoted CPU;,

aread only memory 207, denoted ROM, for storing computer
programs for implementing the invention;

a random access memory 212, denoted RAM, for storing the
executable code of the method of embodiments of the
invention as well as the registers adapted to record vari-
ables and parameters necessary for implementing methods
of communicating according to embodiments of the inven-
tion; and

a communication interface 202 connected to a communica-
tions network 203 over which digital data to be processed
are transmitted.

Optionally, the apparatus 200 may also include the follow-
ing components:

a data storage means 204 such as a hard disk, for storing
computer programs for implementing methods of one or
more embodiments of the invention and data used or pro-
duced during the implementation of one or more embodi-
ments of the invention;

adisk drive 205 for a disk 206, the disk drive being adapted to
read data from the disk 206 or to write data onto said disk;

a screen 209 for displaying data and/or serving as a graphical
interface with the user, by means of a keyboard 210 or any
other pointing means.

The apparatus 200 can be connected to various peripherals,
such as for example a digital camera 200 or a microphone

10

15

20

25

30

40

45

50

55

60

65

8

208, each being connected to an input/output card (not
shown) so as to supply multimedia data to the apparatus 200.

The communication bus provides communication and
interoperability between the various elements included in the
apparatus 200 or connected to it. The representation of the bus
is not limiting and in particular the central processing unit is
operable to communicate instructions to any element of the
apparatus 200 directly or by means of another element of the
apparatus 200.

The disk 206 can be replaced by any information medium
such as for example a compact disk (CD-ROM), rewritable or
not, a ZIP disk or a memory card and, in general terms, by an
information storage means that can be read by a microcom-
puter or by a microprocessor, integrated or not into the appa-
ratus, possibly removable and adapted to store one or more
programs whose execution enables the method of communi-
cating according to the invention to be implemented.

The executable code may be stored either in read only
memory 207, on the hard disk 204 or on a removable digital
medium such as for example a disk 206 as described previ-
ously. According to a variant, the executable code of the
programs can be received by means of the communication
network 203, via the interface 202, in order to be stored in one
of the storage means of the apparatus 200, such as the hard
disk 204, before being executed.

The central processing unit 211 is adapted to control and
direct the execution of the instructions or portions of software
code of the program or programs according to the invention,
which instructions are stored in one of the aforementioned
storage means. On powering up, the program or programs that
are stored in a non-volatile memory, for example on the hard
disk 204 or in the read only memory 207, are transferred into
the random access memory 212, which then contains the
executable code of the program or programs, as well as reg-
isters for storing the variables and parameters necessary for
implementing the invention.

Inthis embodiment, the apparatus is a programmable appa-
ratus which uses software to implement the invention. How-
ever, alternatively, the present invention may be implemented
in hardware (for example, in the form of an Application
Specific Integrated Circuit or ASIC).

FIG. 3 illustrates a first example of implementation of the
invention, based on a SPDY approach.

Two network devices, represented by the nodes N1 and N2,
belong to the same communications network and intend to
communicate by exchanging data packets (e.g. using SPDY
protocol). Each node may keep up to date a local dictionary
comprising packet information the node often uses. This may
be for example the HTTP headers (name and/or values) it
often uses. Each node is also aware of a by-default or “static”
dictionary SD that is common to all nodes of the communi-
cations network (for example the initial compression dictio-
nary defined by the SPDY specification) and which also lists
packet information. These dictionaries may have been pro-
duced according to the SPDY format illustrated in FIG. 1, i.e.
Deflate compression dictionaries. However, in a variant, there
may be indexing dictionaries providing an index for data to
encode or compress. Of course, use of both Deflate compres-
sion dictionary and indexing dictionary together may be con-
templated within the scope of the invention. Below, reference
is preferably made to the use only of a Deflate compression
dictionary.

Prior to exchanging data packets, a connection is estab-
lished between nodes N1 and N2, typically using TCP trans-
port protocol on which HTTP and SPDY rely. As defined by

US 9,338,258 B2

9

SPDY, a plurality of transmissions (requests/responses)
defining a set of transmission will occur during that TCP
connection.

Upon establishing the connection, node N1 shares its local
dictionary with N2, sending it to N2. Reciprocally, N2 also
shares its dictionary by sending it to N1. In this Figure, the
exchanged packet information are those dictionaries with
version information, enabling each of N1 and N2 to check,
later on if needed, that they have the same versions as the
current dictionaries.

These dictionaries are named “shared dictionaries”
because they are used by both N1 and N2 to build their initial
compression dictionary for transmitting data packets (i.e. by
N1 to N2, and reciprocally by N2 to N1). It is to be noted that
a similar initial compression dictionary is built by each node
N1 or N2 to be ableto decompress a data packet received from
the other node. In this respect, in each node N1 or N2, there
may be provided an initial compression dictionary for decom-
pressing data packets received from the other node and an
initial compression dictionary for compressing data packets
to be sent to the other node. These dictionaries however
evolve in a different manner as data packets are compressed
(because different information may be used in data received
and transmitted by the same node, resulting in a different
evolution of the dictionaries).

In another implementation, each node N1 or N2 may have
only one initial compression dictionary which is the same as
that of the other node. In that case, the same compression
dictionary is used whether the corresponding node receives
(decompresses) or sends (compresses) data packets, meaning
that the same initial compression dictionary evolves in the
same way during compression and decompression at both
nodes. The advantage of this approach comes from its sim-
plicity: only one initial compression dictionary is built by N1
and only one initial compression dictionary (the same one) is
built by N2.

While in the example of FIG. 3 the two initial compression
dictionaries of the same node are initially similar (i.e. before
evolving due to the actual compression of data packets), there
exist other implementations of the invention according to
which they are different.

This is because more efficient compression can be
achieved by providing two distinct initial compression dic-
tionaries: one for the data packets encoded by N1 (sent to N2),
and one for the data packets encoded by N2 (sent to N1).
Indeed, each initial compression dictionary is better adapted
to the properties of the data packets sent by its respective node
than a single initial compression dictionary used by both N1
and N2 to compress the data packets. To use the distinct initial
compression dictionaries, each of N1 and N2 has to build both
initial compression dictionaries (one for decompressing
received data packets, and the other one for compressing data
packets to send).

An illustration of such another implementation is provided
below with reference to FIG. 5.

The building of each initial compression dictionary ICD in
FIG. 3 is made similarly by N1 and N2: it consists in concat-
enating N1 shared dictionary with N2 shared dictionary.

In the example of the Figure, the static dictionary is also
concatenated to N1 and N2 shared dictionaries. Defining such
astatic dictionary appears to be useful when it can be assumed
that some dictionary data representing packet information
would be common to all the nodes implementing the inven-
tion. Indeed, since such data or packet information is assumed
to always be useful, defining it as a static dictionary avoids
having to exchange this data or packet information with the
exchanged shared dictionaries.

10

15

20

25

30

35

40

45

55

60

65

10

Based on the built initial compression dictionaries ICD at
N1 and N2, data packets are compressed by each transmitter
and then sent, and decompressed by each receiver.

Thanks to these initial compression dictionaries, which are
specific to the considered nodes N1 and N2, the compression
(during the current connection) of the first packet of data
transmitted from N1 to N2 is made more efficient. Similarly,
the compression of the first packet of data transmitted from
N2 to N1 is made more efficient.

This is because N1 and N2 know which kind of packet data
they send, and so they can provide efficient packet informa-
tion to the other.

Where HTTP headers are exchanged, client and server
know which headers they send, as well as their possible
values. Therefore, the resulting initial compression dictio-
nary made by sharing such packet information, is made more
efficient for compressing HTTP headers than SPDY’s by-
default dictionary.

In this first example of FIG. 3, a main difference with
SPDY comes from the fact that instead of using only a static
dictionary which does not depend on the considered commu-
nicating nodes involved in the current connection (client and
server), an initial compression dictionary based on packet
information shared by the client and server is used. In this
example, the shared packet information does not come only
from the client or the server, but from both nodes. However, it
may come from only one of the two nodes involved.

FIG. 4 illustrates a comparison of the invention with SPDY.

When a first TCP/IP connection is established between a
client and the server ‘example.org’, SPDY uses its by-default
initial compression dictionary. Various exchanges of data
packets are then made using data compression based on that
initial compression dictionary, and that dictionary is progres-
sively updated by Zlib Deflate (the same happens at the
receiver to keep the dictionary synchronized). The TCP/IP
connection ends and, later on, a second TCP/IP connection is
established between the same two nodes. For this second
connection, SPDY also uses the by-default initial compres-
sion dictionary to compress new data packets.

With the invention, a new initial compression dictionary is
created based on shared dictionaries which are exchanged
between the client and server when the first TCP/IP connec-
tion is made. This initial compression dictionary is updated
by Zlib Deflate while data packets are being compressed.
When a second connection occurs, the new initial compres-
sion dictionary based on shared dictionaries is used again,
provided that the versions of the shared dictionaries are the
same. Therefore, for the first request and response of each
connection, improved compression is obtained.

A main advantage of the invention thus concerns the gainin
compression obtained for the first exchange of data packets
between the nodes N1 and N2. In the above example, that gain
in compression is achieved on the encoding of the first
request’s headers by N1 and on the first response’s headers by
N2.

In addition, the invention is easily integrated into SPDY.
This is because it is only necessary to modify the initial
compression dictionary of SPDY to implement the invention.
Once this modified initial compression dictionary has been
used by client and server to initialize Z1ib Deflate encoders
and decoders, SPDY then operates exactly as usual.

It may be noted that for the next requests and responses of
each connection, the compression ratio is generally very simi-
lar between the invention and SPDY. This is because the
majority of useful packet information is added to the dictio-
nary (i.e. during the updating) during the processing of the
first request or response.

US 9,338,258 B2

11

In some cases, the shared dictionaries may however pro-
vide packet information used only in subsequent transmis-
sions within the TCP/IP connection. In this situation, the
invention thus also improves the compression ratio of such
subsequent transmissions.

The above version information specified in the shared dic-
tionaries may be used to further improve the compression
gains. Indeed, in some cases, the cost for exchanging N1 and
N2 shared dictionaries is not significantly smaller than the
compression gain provided by the improved initial compres-
sion dictionary.

To further improve the compression, these N1 and N2
shared dictionaries are stored by each node N1 or N2 along
with the corresponding version information. Then when ini-
tializing each new connection between N1 and N2 (as illus-
trated in FIG. 4 with the second connection), N1 and N2
simply check that they are storing the same version of the
shared dictionaries, instead of always exchanging the shared
dictionaries. The cost of this operation, in terms of band-
width, is much smaller than always exchanging shared dic-
tionaries: only version information is exchanged in most of
cases.

This results for the second connection in a compression
gain that is much more significant. As many connections are
made, the overall gain also increases.

FIG. 5 illustrates another example of implementation of the
invention, which example supports the possibility, for the
communicating nodes, of having different initial compres-
sion dictionaries for their transmissions. In other words, the
initial compression dictionary used by N1 to send data pack-
ets to N2 is different from the initial compression dictionary
used by N2 to send data packets to N1. Of course, the initial
compression dictionary used by any receiving node to decom-
press received data packets is the same as the initial compres-
sion dictionary used by the transmitter to compress the data
packets before they are sent.

In the example of FIG. 5, the kept-up-to-date local dictio-
nary of each node comprises at least one private part and one
shared part (below FIG. 9 illustrates examples of structured
dictionaries with private and shared parts). Of course, the
following explanations still apply when only some of the
nodes implements a private part of the local dictionary, for
example N1 may have both a private part and a shared part,
while N2 only has a shared dictionary (i.e. without a private
part).

The private part stores packet information that is consid-
ered as very specific to the node (let’s say N1), i.e. often used
by that node when transmitting a data packet. It may be packet
information only used in the communication direction N1 to
N2: for example it may be HTTP header information (name
and/or values) relating only to HTTP requests (N1 acting as a
web client), while N2 (web server) will store the HTTP
header information relating only to HTTP requests in the
private part of its local dictionary.

The shared part stores packet information that is consid-
ered specific to the pair of communicating nodes (here N1 and
N2), in which case such information should be used in both
communication directions N1 to N2 and N2 to N1.

When exchanging packet information (i.e. dictionary
data), each node N1 or N2 sends both the shared part of the
local dictionary (as previously explained and illustrated
above with reference to FIG. 3) and the private part of the
local dictionary, to the other node N2 or N1.

While the exchanged shared parts are used to build the
initial compression dictionaries for the compression of both
N1 to N2 messages and N2 to N1 messages, the private part of
N1’s local dictionary is used for the initial compression dic-

10

15

20

25

30

35

40

45

50

55

60

65

12

tionary of N1 to N2 messages (i.e. N1 uses itto build its initial
compression dictionary for compressing and sending data
packets to N2, while N2 uses it to build its initial compression
dictionary only for decompressing the compressed data pack-
ets received from N1). Conversely, the private part of N2’s
local dictionary is used for the initial compression dictionary
of' N2 to N1 messages: N2 uses it to build its initial compres-
sion dictionary for compressing and sending data packets to
N1, while N1 uses it to build its initial compression dictionary
only for decompressing the compressed data packets received
from N2.

Inthis configuration of FIG. 5, the private part of N1°s local
dictionary (respectively N2) is considered to bring a compres-
sion advantage only for the compression of N1 data (respec-
tively N2), whereas the shared part of N1’s local dictionary
(respectively N2) is considered to bring a compression advan-
tage for the compression of both N1 data and N2 data.

As illustrated in FIG. 5, the static dictionary SD may also
be used to build the initial compression dictionaries ICD as
discussed above with reference to FIG. 3. This results in
having an N1-to-N2 initial compression dictionary made of
the static dictionary, the private and shared parts of N1’s local
dictionary and the shared part of N2’s local dictionary; and in
having an N2-to-N1 initial compression dictionary made of
the static dictionary, the shared part of N1’s local dictionary
and the private and shared parts of N2’s local dictionary.

Based on these built initial compression dictionaries, N1
and N2 can efficiently (i.e. with a good compression ratio)
communicate right from the first transmission in the current
connection.

FIG. 6 is a flowchart illustrating exchanges of data packets
using dictionaries according to the invention.

The process starts at step 600 where a connection is estab-
lished between a first node N1 and a second node N2 of a
communications network. Typically, this connection can be a
TCP/IP connection.

Next, step 610 checks whether or not N1 and N2 have the
same version of their respective shared dictionaries. This
check occurs before exchanging the data packets (see step
650 below).

This check may be done by exchanging two messages
between N1 and N2.

For instance, N1 sends a first message comprising the
version information associated with its local dictionary (two
values can be provided in the case of a private part and a
shared part of that local dictionary) and associated with the
dictionary of N2 that N1 stores (if any received during a
previous exchange of packet information). Then, N2 com-
pares the received version information with its stored version
information, and return the result of this comparison. By
doing so, both N1 and N2 know whether or not they have the
same version of their respective dictionaries.

Of course, other implementations of step 610 can be used.
For example, each of N1 and N2 sends the version informa-
tion of its local dictionary to the other node. Then that other
node locally compares the received version information with
the shared dictionary it locally stores, and returns the result of
this comparison.

If N1 and N2 do not have the same version of their respec-
tive dictionaries (this is for example the case when N1 and N2
have no information about the other node’s dictionary), the
process goes on through step 620 where the missing packet
information (i.e. the shared dictionary having a wrong ver-
sion) is exchanged between the two nodes, as shown by the
arrows in FIGS. 3 and 5. The packet information may be sent
un-compressed, or compressed using a compression dictio-
nary other than the one concerned by this packet information.

US 9,338,258 B2

13

N1 sends its local dictionary to N2 (along with version
information, typically a version number), and N2 sends its
local dictionary to N1 (along with version information).

Refined exchanges may be implemented to reduce the net-
work load. For example, where it has been determined at step
610 that either N1’s local dictionary or N2’s local dictionary
is already known by the other node with the same version,
only the missing data are sent to that other node: for example
only N1’s local dictionary is sent to N2 if N1 has the right
version of N2’s local dictionary.

Further to step 620, step 630 consists in building the initial
compression dictionaries ICD at N1 and N2. Further details
about that step 630 are given below with reference to FIG. 7.

Further to step 630 or if it is determined at step 610 that N1
and N2 has the same versions of the dictionaries, the com-
pression contexts for N1 and N2 are initialized at step 640.

For example, the initialization of a compression context
may consist in providing an initial compression dictionary (as
built in step 630 for instance) to a compressor or to a decom-
pressor, when appropriate. Initialization is made at least for
one compressor (e.g. N1 if N1 sends data to N2) and one
decompressor (e.g. N2 if N1 sends data to N2). If both N1 and
N2 send data using compression to the other node, then N1
and N2 both have a compressor and a decompressor, and then
corresponding compression contexts.

Further to context initialization step 640, data packets are
compressed and then exchanged between N1 and N2 at step
650.

The compressed data may in some embodiments be only
part of the data packets, as in the case of SPDY where the
compression contexts are used only for the compression/
decompression of HT'TP headers.

Next to step 650, the process ends at step 690.

This process is repeated at each new connection for com-
municating between N1 and N2. One may note that the
exchange 620 of packet information is bound to occur at the
first connection, resulting in a step 620 that is liable to delay
(given the amount of packet information to exchange) the
transmission 650 of data packets.

In order to make the process faster, one particular imple-
mentation of the invention provides for the packet informa-
tion to be exchanged in periods of no data packet transmission
during the very first connection between the two nodes.

This means that the packet information (i.e. the dictionar-
ies) is exchanged in parallel of the exchange of data packets
during the first connection, typically when no data is being
exchanged between N1 and N2.

Then, when a second connection between N1 and N2
occurs, the invention can be applied by checking for the
versions and using the dictionaries previously exchanged pro-
vided they have not changed.

In another implementation of the invention, the check 610
of dictionary version information may be delayed after
exchanging a first data packet 650, thus allowing an earlier
start of data packet exchange between N1 and N2. This imple-
mentation relies on assuming that both nodes have the same
version of the dictionaries.

In this situation step 600 of the node that encodes the data
packets (let’s assume it is N1) is directly followed by step
640. Furthermore, the version information of each dictionary
is indicated in the data packet sent at step 650 (this indication
being not compressed using the dictionary, otherwise the
other node N2 would not be able to decode it correctly ifithas
another version of the dictionary).

When the receiving node N2 receives the data packet, it
checks whether the versions are the ones it expects (i.e. the
versions of the dictionaries it stores).

10

15

20

25

30

35

40

45

50

55

60

65

14

If both N1 and N2 dictionary versions are the expected
ones, then the data packet can be decompressed, and further
data packets can also be encoded by N2 to be sent to N1.

If the N1 or N2 dictionary version is not the expected one,
then the data packet cannot be decompressed as the initial
compression dictionary may be different in N1 and N2. In that
situation, N2 generates an error to be sent to N1, or sends a
specific message requesting the dictionary exchange (thus
triggering step 620).

It may be understood that, by using the private and shared
parts of the local dictionaries, two pieces of version informa-
tion are provided, respectively for the private part and the
shared part. This makes it possible to optimize the exchange
of packet information when needed. For example, if only the
private part of N2’s local dictionary has been modified when
a data packet from N1 is received, then the data packet can be
correctly decompressed by N2 since N1’s dictionary has not
changed, and the shared part of N2’s dictionary has not
changed either. In such a case, N2 adds an indication about the
new private part of its local dictionary inside the next message
sent to N1, so that N1 knows it has to obtain this new private
part (in a variant, the new private part may even be automati-
cally sent to N1).

Based on the exchanged packet information, i.e. the local
dictionaries (private and shared parts) in the examples above,
an initial compression dictionary ICD is built. As explained
above, the same initial compression dictionary may be
obtained for the N1 to N2 transmissions and for the N2 to N1
transmissions. In another scheme, different initial compres-
sion dictionaries are used for the two directions of transmis-
sion.

The building of the initial compression dictionary for Ni to
Nj transmissions is now described with reference to FIG. 7.

The building of Ni to Nj initial compression dictionary ICD
starts at step 700 by obtaining the shared parts of Ni and Nj
dictionaries, denoted respectively NiS and NjS.

Next, step 710 checks whether or not Ni has a private part
NiP in its local dictionary. If not, step 710 is followed by step
720, where a dynamic dictionary DD is defined as the addi-
tion of NiS and NjS.

The addition of dictionaries may be seen as grouping all the
entries of the dictionaries into a single resulting dictionary.
However, other implementations may be used, for example
the intersection of dictionaries rather than grouping the
entries.

Where each dictionary is a string concatenating the entries,
the addition of dictionaries can be defined as a concatenation
of said strings.

If the dictionaries have a more complex structure, such as
the one illustrated in FIG. 9 where dictionaries are XML
documents, the definition of the addition may be more com-
plex. An example of such addition is described below with
reference to FIG. 8.

On the other hand, if Ni has a private part NiP in its local
dictionary, step 710 is followed by step 730, where the
dynamic dictionary DD is defined as the addition of NiS, NjS
and NiP.

Once the dynamic dictionary DD is defined, step 740 deter-
mines whether or not a static dictionary SD is available. The
availability of such a dictionary is only an implementation
decision: if it can be known that some packet information is
likely to be common to all the dictionaries of the nodes
implementing the invention, then this packet information can
beused as a static dictionary. Defining such a static dictionary
enables the amount of packet information exchanged by
nodes Ni and Nj at step 620 to be limited. This is because the

US 9,338,258 B2

15

local dictionaries are optimized by not storing packet infor-
mation already present in the static dictionary.

If there is no static dictionary SD, the initial compression
dictionary ICD is defined by the dynamic dictionary DD at
step 750.

If there is a static dictionary SD, the initial compression
dictionary ICD is defined as the addition of the dynamic
dictionary DD and the static dictionary SD, at step 760.

Next to step 750 or 760, the process ends at step 790.

Of course, when the local dictionaries do not implement a
private part, step 700 is directly followed by step 720, avoid-
ing steps 710 and 730. Similarly, when it is known that there
is no static dictionary, step 720 (or 730) is directly followed
by step 750, avoiding steps 740 and 760.

FIG. 8 illustrates the addition of structured dictionaries, i.e.
a list of structured items, denoted D1 and D2. It is considered
that each item comprises a name and a value.

As shown above it may be the addition of NiS to NjS, of
NiS to NjS and to NiP, of SD to DD.

At step 800, two lists of items, one for dictionary D1 and
one for dictionary D2, are obtained. Then, at step 810, it is
determined whether there remains an item [T present in both
lists, which means that two items IT1 and IT2, coming from
D1 and D2, have the same name IN.

In particular, the items of D1 and D2 may be processed in
a predetermined order (for instance, the order of the items in
the list), said order allowing the definition of a more efficient
dictionary.

If'so, a single value is computed or built from IV1 and IV2,
the values of the two items IT1 and I'T2, at step 820.

For example, if each of IV1 and IV2 contains a list of
strings as illustrated in FIG. 9, the building of a single value
from IV1 and IV2 may consist in determining the intersection
of those two lists of strings, and then in concatenating the
strings forming the intersection.

Another strategy may be to compute the union of the
strings instead of the intersection.

In some cases, it may be advantageous to compute the
intersection for some items, and the union for others.

Yet another strategy may rely on selecting strings based on
the presence of others strings, possibly in other items (includ-
ing items having a different name). Such selection (related to
other items) may be applied to items present only in D1 or D2.
For example, items may specify a content language. Thus
when compressing data packets to send images, content lan-
guage items may be discarded from selection since they are
useless.

At step 830, the value built at step 820 is appended to the
corresponding item in the dictionary to be provided as a result
of the addition process.

At step 810, if there is no remaining item ['T1 and IT2 from
D1 and D2 such that IT1 and 1T2 have the same name, the
remaining items present only in D1 or D2 are processed as
follows: at step 840, it is determined whether or not there
remains an item IT in one of the two lists; if so, a value is built
from IT at step 850, generally by concatenating the strings
listed in the item I'T; then at step 860, this value is appended to
the corresponding item in the dictionary to be provided as a
result of the addition process.

When there is no remaining item IT at step 840, the process
ends at step 890.

In this implementation of the addition process, the building
of'avalue involves an intersection or a union of values defined
in items having the same name. In a variant, the intersection
or union may be performed on the values associated with
items (from the two lists) having different names. For
example, when considering the HTTP header terminology,

20

30

35

40

45

50

16

the “Accept” header of the HTTP request (see FIG. 1) is of the
same nature as the “Content-Type” header defined in HTTP.
In this context, they may be grouped together using the same
name “types” (see the example of FIG. 9). Using the same
name makes it possible to avoid some ambiguous situations.

Steps of FIG. 8 are further explained with help of the
examples of structured dictionaries of FIG. 9. In these
examples, the dictionaries local to N1 and N2 are structured
XML documents listing possible HTTP headers. Of course,
more HTTP headers than shown in the Figure can be added to
the dictionaries.

The exchange of packet information between N1 and N2
may consist in exchanging those XML documents.

Each local dictionary comprises a <private> element and a
<shared> element to separate the private part and the shared
part of the dictionary, as already mentioned above.

The <private> element comprises HT'TP header names,
possibly with associated values for those headers.

In the example of the N2 dictionary where N2 is an HTTP
server, the HTTP header name “server” is included in the
private part of the dictionary, along with an associated value/
name of the server used, for instance “Apache”.

In the example of the N1 dictionary where N1 is a client
node, the HTTP header name “user-agent” is included in the
private part of the dictionary, along with one or several asso-
ciated values of the client’s user-agent, for instance “Mozilla/
5.0”, “Gecko/20110303” and “Firefox/3.6.15”.

The <shared> element comprises more generic informa-
tion that is used by both nodes, in particular by the HTTP
client and the HTTP server.

In the example of the figure, the shared part of the dictio-
nary comprises a <version> element containing the version of
HTTP used (“HTTP/1.17), a <types> element containing a
list of supported data types (“text/html”, “image/jpg”,
“image/gif”, etc.), and a <languages> element containing a
list of provided languages (for the server) and requested lan-
guages (for the client) (“en”, “en-us”).

Of course, this example is provided for illustrative pur-
poses, such that other and additional elements may be listed in
the <private> and <shared> elements.

As explained above with reference to FIG. 8, the building
of'the shared dictionary from the two N1 and N2 dictionaries
comprises computing one string for each of the three children
of the <shared> element: i.e. <version>, <types> and <lan-
guages>.

For each child, a list of strings is obtained from the asso-
ciated value in each N1 or N2 dictionary: each value is a list
of semi-colon separated strings as shown in the Figure.

The intersection of step 820 between the two lists of strings
from the N1 and N2 dictionaries is computed, and the strings
comprised in this intersection are concatenated. For example,
for the <types> element, the two lists are: text/html;image/
jpg;image/gif;image/png (for the N1 dictionary) and text/
html;image/jpg;image/gif (for the N2 dictionary). The value
obtained at step 820 by intersection and concatenating is:
“text/htmlimage/jpgimage/gif™.

The intersection approach makes the “image/png” value
not appear in the obtained value, although it appears in the N1
dictionary. Using this approach may be justified by the fol-
lowing explanation: considering that N1 is an HTTP client
and N2 an HTTP server, the example of FIG. 9 means that the
HTTP server (N2) does not expect to provide image/png data.
Therefore, it can be assumed that there is no advantage to add
“image/png” to the shared dictionary for the HTTP client and
the HTTP server, even if the client supports image/png data.

The same argument may be used for languages, protocol
version, character encoding, compression method, etc.

US 9,338,258 B2

17

More generally, the HTTP header names frequently used
by N1 and N2 are advantageously included respectively in
server and client dictionaries. When the values of HTTP
headers can be known in advance, those values are also added
to the dictionaries.

Where there are a private part and a shared part in the
dictionaries, the private part preferably contains packet infor-
mation specific to one node, whereas the shared part contains
packet information which is somehow related to both nodes.

In one particular embodiment of the invention, the initial
compression dictionary depends on a URL pattern included
in the data packet to be transmitted in the first transmission.
This makes it possible to obtain an initial compression dic-
tionary which is specific to the data packet to be transmitted,
and then which provides an improved compression of that
packet.

For example, an HTTP server “example.org” provides
access to resources accessible through a Uniform Resource
Locator (URL). For instance, an image “sample.jpg” is acces-
sible through the URL “http:/www.example.org/images/
sample.jpg”, and a digital document “doc.html” is accessible
through the URL “http://www.example.org/docs/doc.html]”.

In the HTTP server, the images are stored in an images
directory and the documents are stored in a documents direc-
tory.

This organization of the data through separate directories
offers different advantages.

In particular, different parameters can be applied to the
HTTP server for the different directories: the images direc-
tory can be served statically (i.e. each image resource that is
requested is directly obtained from a static file), while the
documents directory can be served dynamically (i.e. the
document resource that is requested is not directly available
as a file, but is instead generated upon request).

This organization based on URL patterns (i.e. the URL
defining the directories) reflects differences in data content.
Since the HTTP headers comprise the type of the data
exchanged (see FIG. 9 for example): “images/jpeg”, “images/
gif” or “images/png” for the images, and “text/html]” or “text/
xml” for the documents, there is an interest in distinguishing
various compression dictionaries for some of the considered
URL patterns. To be precise regarding the above example,
two initial compression dictionaries may be considered, one
related to the images directory (yet including “images/jpeg”,
“images/gif” or “images/png”) and the other one to the docu-
ments directory (yet including “text/html” or “text/xml”).

By selecting the appropriate packet information for each
initial compression dictionary, better compression is there-
fore achieved.

FIG. 10 illustrates, in a flow chart, such an embodiment of
the invention handling URL patterns. While the explanations
below are based on processing a request at a first node, similar
steps may be implemented when processing a response at the
other node.

This process starts at step 1000 by obtaining a request
matching pattern PAT. This pattern is for example specified in
the first request of the current connection to be transmitted or
received (depending the node considered).

For example, this may be a whole URL specified in the
request or a part of that URL that matches with pre-defined
URL patterns. In the case of a request URL matching several
patterns (for instance, http://www.example.org/images/jpeg/
sample jpg matches both http:/www.example.org/images/
and http://www.example.org/images/jpeg/), the most specific
match (in this example, the last one) is preferably considered.

Next, step 1010 checks whether or not this is the first
request matching pattern PAT for the current connection (i.e.

10

15

20

25

30

35

40

45

50

55

60

65

18

whether or not that pattern PAT has already been encountered
during the current connection). In this respect, a counter or a
flag may be provided in the node so that itis incremented each
time a request matching pattern PAT is obtained.

Ifit is the first PAT, step 1020 further checks whether or not
an initial compression dictionary for that pattern PAT has
already been created and is available. Availability may take
into account version information of the initial compression
dictionary compared to version information of packet infor-
mation specific to that pattern PAT.

Indeed, even if this is the first request matching pattern PAT
for the current connection, another one may have been pro-
cessed in a previous connection, and the corresponding initial
compression dictionary may have already been created and
stored.

If the initial compression dictionary has not already been
created, it is built at step 1030. Of course, various initial
compression dictionaries related to various patterns PAT may
have been created in advance, such that step 1030 comes
down to selecting the appropriate already created dictionary.

The building of the initial compression dictionary is quite
similar to that disclosed above with reference to FIG. 7 for
example, except that, to take into account the URL pattern,
the static or by-default dictionary may comprise, in addition
to a core part, one or more additional parts that are selected
according to the URL pattern. For example, an additional part
may be specific to image data, and another one to document
data.

URL patterns can be described in many ways, and this
document does not aim at listing them. As an example of a
possible approach, a default dictionary, used for all the pat-
terns, may be defined and complemented with additional
dictionaries (e.g. one for images and one for documents in
above example). With this approach, if the request matches a
pattern, the corresponding initial compression dictionary is
built based on the by-default core part of the static dictionary
and the right additional part (of course private and shared
parts as defined above are still considered). It there is no
matching with a pattern, only the by-default core part of the
static dictionary is considered.

Other approaches may however be implemented. For
example, the private and/or shared parts of the local dictio-
naries may also be dependent on URL patterns.

After step 1030 or step 1020 if the initial compression
dictionary for pattern PAT is available, a corresponding com-
pression context is created at step 1040 using said initial
compression dictionary.

If it is determined at step 1010 that a request matching
pattern PAT has already been processed for the current con-
nection, then a corresponding compression context has
already been created and is retrieved at step 1050.

Steps 1040 and 1050 are followed by step 1060 during
which an indication of the pattern PAT is added to the data
packet to be sent.

As an example, if the patterns are described in a list, the
indication may be the index of pattern PAT in that list. Such
information helps the decompressor to select the appropriate
URL-pattern-based dictionary to generate the decompression
context.

Next, at step 1070, the data packet is compressed. In par-
ticular, the HTTP headers of that data packet are compressed
using the initial compression dictionary as explained above.

US 9,338,258 B2

19

The compressed data packet is appended to the data to be
sent (in particular, appended to the URL pattern indication)
and is then sent at step 1080.

The process then ends at step 1090.

Such approach shows that the invention supports difterent
initial compression dictionaries for the same direction of
transmission (for example from N1 to N2).

Although the present invention has been described herein-
above with reference to specific embodiments, the present
invention is not limited to the specific embodiments, and
modifications which lie within the scope of the present inven-
tion will be apparent to a person skilled in the art. Many
further modifications and variations will suggest themselves
to those versed in the art upon making reference to the fore-
going illustrative embodiments, which are given by way of
example only and which are not intended to limit the scope of
the invention as determined by the appended claims. In par-
ticular different features from different embodiments may be
interchanged, where appropriate.

For example, even though only one static dictionary is
mentioned in the above description, using several static dic-
tionaries is also possible. For example, in the context of
HTTP exchanges (SPDY), a static dictionary SD may be
defined for client messages, and another one for server mes-
sages. In that case, the static dictionary is selected according
to an appropriate criterion (client or server; nature of the data
packets; etc.) before it is added to the dynamic dictionary DD.

Also, as introduced above, the invention applies to any kind
of compression dictionary that may be initialized before com-
pressing data, including the Deflate compression dictionary
or an indexing dictionary.

The invention claimed is:

1. A method of communicating data packets in a set of
transmissions between a first communicating device and a
second communicating device of a communications network,
the method comprising:

exchanging, before the set of transmissions, first-device-

provided packet information and second-device-pro-
vided packet information between the first communicat-
ing device and the second communicating device,
wherein the first-device-provided packet information
comprise a private part and a shared part of a dictionary
local to the first communicating device and the second-
device-provided packet information comprise a private
part and a shared part of a dictionary local to the second
communicating device;

generating, at the first communicating device, a first initial

compression dictionary, and generating, at the second
communicating device, a first initial decompression dic-
tionary, both the first initial compression dictionary and
the first initial decompression dictionary are generated
based on the private and shared parts of the dictionary
local to the first communicating device and the shared
part of the dictionary local to the second communicating
device;

generating, at the first communicating device, a second

initial decompression dictionary, and generating, at the
second communicating device, a second initial com-
pression dictionary, both the second initial decompres-
sion dictionary and the second initial compression dic-
tionary are generated based on the shared part of the
dictionary local to the first communicating device and
the private and shared parts of the dictionary local to the
second communicating device;

using, at the first communicating device, the first initial

compression dictionary to compress data packets of the
set of transmissions before sending them, through the set

30

40

45

50

55

20

of transmissions, over the communications network to
the second communicating device; and
using, at the first communicating device, the second initial
decompression dictionary to decompress data packets
received in the set of transmissions from the second
communicating device via the communication network;

using, at the second communicating device, the second
initial compression dictionary to compress data packets
of the set of transmissions before sending them, through
the set of transmissions, over the communications net-
work to the first communicating device; and

using, at the second communicating device, the first initial

decompression dictionary to decompress data packets
received in the set of transmissions from the first com-
municating device via the communication network.

2. The method of claim 1, wherein generating the initial
compression dictionary comprises concatenating first-de-
vice-provided and second-device-provided compression dic-
tionaries.

3. The method of claim 1, wherein the first communicating
device and the second communicating device generate the
same initial compression dictionaries for their respective first
data packet transmission from themselves in the set.

4. The method of claim 1, wherein generating the initial
compression dictionary is also based on a predefined com-
pression dictionary known by both the first communicating
device and the second communicating device.

5. The method of claim 1, wherein the initial compression
dictionary depends on a URL pattern included in the data
packet to be transmitted in a transmission of the set.

6. The method of claim 5, wherein the exchanged first-
device-provided packet information and second-device-pro-
vided packet information are specific to the URL pattern.

7. The method of claim 1, wherein the first-device-pro-
vided and second-device-provided packet information com-
prises respective version numbers.

8. The method of claim 7, further comprising exchanging
the version numbers between the first communicating device
and the second communicating device, and checking the
exchanged version numbers with version numbers associated
with an already-generated initial compression dictionary.

9. The method of claim 7, wherein the version numbers
comprise two pieces of version numbers, respectively for the
private part and the shared part of the corresponding packet
information.

10. The method of claim 1, wherein the set of transmissions
belongs to the same connection over the communications
network between the first communicating device transmitter
and the second communicating device.

11. The method of claim 10, wherein exchanging the first-
device-provided second-device-provided packet information
is performed prior to establishing the connection to which the
set of transmissions belongs.

12. The method of claim 11, wherein the first-device-pro-
vided and second-device-provided packet information is
exchanged in periods of no data packet transmission during a
first connection between the first communicating device and
the second communicating device prior to the connection to
which said set of transmissions belongs.

13. The method of claim 10, wherein an initial compression
dictionary is obtained for each new connection between the
first communicating device and the second communicating
device, and the initial compression dictionary of a connection
evolves with the compression of data packets for the set of
transmissions of that connection.

US 9,338,258 B2

21

14. The method of claim 1, wherein the first-device-pro-
vided and second-device-provided packet information is not
compressed when exchanged.

15. The method of claim 1, wherein the first-device-pro-
vided packet information and the second-device-provided
packet information comprise data relating to HTTP header
contents, and compressing the data packets comprises com-
pressing HTTP headers of the data packets using the initial
compression dictionary.

16. The method of claim 15, wherein the first communi-
cating device and the second communicating device form a
client-server scheme.

17. The method of claim 1, wherein generating the initial
compression dictionary at the first or second communicating
device and the initial decompression dictionary at the other
communicating device does not uses the exchanged private of
the other’s local dictionary; and

generating the initial decompression dictionary at the first
or second communicating device and the initial com-
pression dictionary at the other communicating device
does not use the exchanged private part of the dictionary
local to the first or second communicating device.

18. The method of claim 1, wherein the private part of the
dictionary local to one of the first and second communicating
devices comprises packet information only used in the com-
munication direction from this communicating device to the
other communicating device.

19. The method of claim 18, wherein the packet informa-
tion only used in the communication direction comprises
HTTP header information relating only to HTTP requests.

20. The method of claim 1, wherein generating the initial
compression dictionary or the initial decompression dictio-
nary comprises selecting strings from lists of strings compos-
ing the private and shared parts, based on the presence of
others strings within the lists of strings.

21. A network system comprising:

a first communicating device and a second communicating
device communicating together in a communication net-
work, through a set of transmissions of data packets;

an exchange module of the first communicating device
exchanges, before the set of transmissions, with the sec-
ond communicating device first-device-provided packet
information comprises a private part and a shared part of
a dictionary local to the first communicating device;

an exchange module of the second communicating device
exchanges, before the set of transmissions, with the first
communicating device second-device-provided packet
information comprises a private part and a shared part of
a dictionary local to the second communicating device;

generation means of the first communicating device gen-
erates a first initial compression dictionary, and genera-
tion means of the second communicating device, gener-
ates a first initial decompression dictionary, both
generating being based on the private and shared parts of
the dictionary local to the first communicating device
and the shared part of the dictionary local to the second
communicating device;

the generation means of the first communicating device
generates a second initial decompression dictionary, and
the generation means of the second communicating
device generates a second initial compression dictio-
nary, both generating being based on the shared part of
the dictionary local to the first communicating device
and the private and shared parts of the dictionary local to
the second communicating device;

a compressor of the first communicating device uses the
first initial compression dictionary to compress data

10

20

30

35

40

45

55

65

22

packets of the set of transmissions before sending them,
through the set of transmissions, over the communica-
tions network to the second communicating device; and

a communication module of the first communicating
device sends, through the set of transmissions, the com-
pressed data packet over the communications network to
the second communicating device, and receives, though
the set of transmissions, compressed data packets from
the second communicating device via the communica-
tions network; and

a decompressor of the first communicating device uses the
second initial decompression dictionary to decompress
data packets received in the set of transmissions from the
second communicating device via the communication
network;

a compressor of the second communicating device uses the
second initial compression dictionary to compress data
packets of the set of transmissions before sending them,
through the set of transmissions, over the communica-
tions network to the first communicating device; and

a communication module of the second communicating
device sends, through the set of transmissions, the com-
pressed data packet over the communications network to
the first communicating device, and receives, though the
set of transmissions, compressed data packets from the
first communicating device via the communications net-
work; and

a decompressor of the second communicating device uses
the first initial decompression dictionary to decompress
data packets received in the set of transmissions from the
first communicating device via the communication net-
work.

22. A non-transitory computer-readable medium storing
instructions of a computer program which, when executed by
amicroprocessor or computer system in an apparatus, causes
the apparatus to perform a method comprising:

exchanging, before the set of transmissions, first-device-
provided packet information and second-device-pro-
vided packet information between the first communicat-
ing device and the second communicating device,
wherein the first-device-provided packet information
comprise a private part and a shared part of a dictionary
local to the first communicating device and the second-
device-provided packet information comprise a private
part and a shared part of a dictionary local to the second
communicating device;

generating, at the first communicating device, a first initial
compression dictionary, and generating, at the second
communicating device, a first initial decompression dic-
tionary, both the first initial compression dictionary and
the first initial decompression dictionary are generated
based on the private and shared parts of the dictionary
local to the first communicating device and the shared
part of the dictionary local to the second communicating
device;

generating, at the first communicating device, a second
initial decompression dictionary, and generating, at the
second communicating device, a second initial com-
pression dictionary, both the second initial decompres-
sion dictionary and the second initial compression dic-
tionary are generated based on the shared part of the
dictionary local to the first communicating device and
the private and shared parts of the dictionary local to the
second communicating device;

using, at the first communicating device, the first initial
compression dictionary to compress data packets of the
set of transmissions before sending them, through the set

US 9,338,258 B2

23

of transmissions, over the communications network to
the second communicating device; and

using, at the first communicating device, the second initial
decompression dictionary to decompress data packets
received in the set of transmissions from the second
communicating device via the communication network;

using, at the second communicating device, the second
initial compression dictionary to compress data packets
of'the set of transmissions before sending them, through
the set of transmissions, over the communications net-
work to the first communicating device; and

using, at the second communicating device, the first initial
decompression dictionary to decompress data packets
received in the set of transmissions from the first com-
municating device via the communication network.

#* #* #* #* #*

10

15

24

